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Motivation

@ Exact inference on the Ising model defined on a planar graph is
easy for zero external fields (Kasteleyn, Fisher and others, 1960s):
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Otherwise is intractable, #P (Barahona, 82).
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Motivation

@ Exact inference on the Ising model defined on a planar graph is
easy for zero external fields (Kasteleyn, Fisher and others, 1960s):

1 - -
p(x) _ 782(,',/) wiXixj+; 0xi

Otherwise is intractable, #P (Barahona, 82).

@ Recently, the Fisher & Kasteleny method has been introduced in
the Machine Learning community:

» "Approximate inference using planar graph decomposition”,
Globerson A & Jaakkola T (NIPS 07)

> "Efficient Exact Inference in Planar Ising Models", Schraudolph N & Kamenetsky D,
(NIPS 08)

@ Both perform exact inference on an easy planar model
@ We directly approximate Z on difficult planar graphs.
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Motivation

Loop Calculus and Belief Propagation (BP)

@ Exact Z of a general binary graphical model can be expressed as
a finite sum of terms that can be evaluated once the BP solution
is Known. (Chertkov & Chernyak, 06a)

z=27".z z= <1+Zrc)

cec

@ Each term corresponds to a w @
generalized loop (subgraph : ' .
with no degree 1 vertices) @@@

@ Summing all terms is intractable... but truncation can provide
improvements on BP (Gémez et al 07, Chertkov & Chernyak, 06b).
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Motivation

2-regular loops non 2-regular loops

2-regular loop : A loop where all nodes have degree two.
2-regular part. function Z; : Approximation including all 2-regular
loops only. Zy = 7P - zy, 29 =1+ cecor fac|=2,vaec Fe-
Triplet : A node with degree 3 in the Forney graph.
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Motivation

"Belief Propagation and Loop Series for planar graphs”,
(Chertkov et al, 08)

@ The 2-regular partition function Z; can be expressed as a sum of
weighted perfect matchings.

@ For planar graphs, Z; can be computed in polynomial time.

@ The full loop series can be expressed as a sum over so-called
Pfaffian terms, and each term may sum many loops.

Contribution
@ We develop an algorithm to compute the full Pfaffian series.
@ Empirical analysis:

Compare Loop and Pfaffian series
Analyze the accuracy of the Z; approximation.
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Loop series for planar graphs

Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP.
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Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP.
© Obtain 2-core.
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Loop series for planar graphs
Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP.
© Obtain 2-core.
© Construct planar embedding.
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Loop series for planar graphs

Computing 2-regular partition function
Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP.
© Obtain 2-core.

© Construct planar embedding.
© Obtain extended graph G,
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Loop series for planar graphs
Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP. -
© Obtain 2-core.

© Construct planar embedding.

© Obtain extended graph G,,;.

© Obtain Pfaffian orientation for the
edges of the extended graph — G/,,.

For every face, the number
of clockwise oriented edges
is odd.
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Loop series for planar graphs

Computing 2-regular partition function
Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP. -
© Obtain 2-core.

© Construct planar embedding.

© Obtain extended graph G,,;.

© Obtain Pfaffian orientation for the
edges of the extended graph — G/,,.

@ Construct skew-symmetric matrices A

and B.
+ L if (i,j) S Sg;n
Aj =~y 100 € &g, -
0 otherwise
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Loop series for planar graphs

Computing 2-regular partition function
Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP. -
@ Obtain 2-core.
© Construct planar embedding.
© Obtain extended graph G,,;.
© Obtain Pfaffian orientation for the
edges of the extended graph — G/ ,.

@ Construct skew-symmetric matrices A
and B.

+1 if (i.]) € &g,
0  otherwise
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Loop series for planar graphs

Computing 2-regular partition function

Forney graph G with binary variables and nodes with degree at most 3.

@ Find stationary point of BP. -
© Obtain 2-core.

© Construct planar embedding.

© Obtain extended graph G,,;.

© Obtain Pfaffian orientation for the
edges of the extended graph — G/,,.

@ Construct skew-symmetric matrices A
and B.

@ The 2-regular partition function is:

Z@ = ZBP * 20,

zp = sign (Pfaffian (B)) - Pfaffian(A).
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Loop series for planar graphs

Computing the full Pfaffian series
Computing full loop series
@ Denote 7 the set of all possible triplets in G.
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Computing full loop series
@ Denote 7 the set of all possible triplets in G.
@ Consider a subset ¥ € 7 with an even number of triplets.
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Loop series for planar graphs
Computing the full Pfaffian series
Computing full loop series
@ Denote 7 the set of all possible triplets in G.
@ Consider a subset ¥ € 7 with an even number of triplets.

@ Loops in G including the triplets in ¥ correspond to perfect
matchings on another extended graph Ge.,, .
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Loop series for planar graphs
Computing the full Pfaffian series
Computing full loop series
@ Denote 7 the set of all possible triplets in G.
@ Consider a subset ¥ € 7 with an even number of triplets.
@ Loops in G including the triplets in ¥ correspond to perfect
matchings on another extended graph Ge.,, .
@ Exact Z can be written as a sum of Pfaffian terms:
2= Zu, Zu=2zv || tam  ze =sign (Pf(By)) - Pf (Aq,> :
4

acVvy

@ The 2-regular partition function Z; correponds to ® = ().
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Experiments
Setup

Model

@ We consider binary pairwise models (Ising).
Interaction strengths {J,.(u.ac} } ~ N(0, 3/2).
External fields {J,.(uw) } ~ N (0, 30).
@ © and g determine how difficult the inference problem is.

@ For © = 0 problems are easy, i.e. Z; is exact.

|logZ—log Z'|

. ! __
o Error measure : errorz’ = =47
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Experiments

Full series
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@ Arandom instance: © = 0.1 and § € {0.1,0.5, 1.5}.

@ Both loop and pfaffian terms are sorted by absolute value in
descending order.
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Experiments
Setup

We compare the Z; approximation with:

Truncated Loop-Series for BP (TLSBP): Gémez et al. (07’).

Cluster Variation Method (CVM-Loopk): Heskes et al. (03’).
Tree-Structured Expectation Propagation (TreeEP) : Minka & Qui (04’).

When possible, we also compare with the following two variational
methods which provide upper bounds on the partition function:

Tree Reweighting (TRW) : Wainwright et al. (05’).
Planar graph decomposition (PDC) : Globerson & Jaakola (07°).
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Experiments
Grids: Ising 7x7 (attractive interactions)
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Experiments
Grids: Ising 7x7 (mixed interactions)
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Experiments
Grids: scaling with model size (very weak local fields, © = 0.01)
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Approximate inference on planar graphs using Loop
Calculus and BP

Conclusions

Conclusions
@ Without the requirement of searching for loops, the Z; corrects the
BP approximation even in difficult problems.
@ Significant improvements are always obtained for sufficiently large
external fields.

@ 7, is competitive with other state of the art methods for
approximate inference of Z.

@ Computational cost: substitute brute-force evaluation of the
Pfaffians by a smarter one available for planar graphs:
O(N?) — O(N3/?) (Gallucci 00’, Loh and Carlso 06").

@ Consider extensions to non-planar graphs.
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